
State of Code Health
How engineering and security leaders approach code quality and
security in 2023.

2023

Preface
Code health refers to the state of an organization’s codebase regarding its quality, maintainability, and

security ¹. It’s an abstract measure of how well-engineered the code is and how easy it is to maintain

and extend over time. By focusing on code health, engineering leaders can ensure their software is

reliable, efficient, and secure, ultimately leading to better business outcomes.

In this whitepaper, we present the findings from our survey of software developers and application

security specialists in the technology industry on improving the process and outcomes of maintaining

code health.
 

 ¹ "Code Health: Google's Internal Code Quality Efforts." 3 Apr. 2017,

Accessed 1 Feb. 2023.

https://testing.googleblog.com/2017/04/code-health-googles-internal-code.html.

https://testing.googleblog.com/2017/04/code-health-googles-internal-code.html

Contents

Introduction 1

The Survey 3

Code Health: Processes 6

Code Health: Outcomes 20

Conclusion 24

About DeepSource 25

Introduction
Promoting code health improves developer experience and productivity as they deliver products or

features with shorter iteration time, less development effort, more stability, and enhanced performance.

Besides faster and cost-effective software delivery, ensuring code health helps engineering leaders

remediate technical debt.

The underlying ethos is that if you want to go fast, meet
schedules, and keep your customers and managers happy,
you should keep your code as clean as possible. Still, a 2018
poll found the worldwide cost of dealing with “bad code” to
be as high as $85 billion per year². Those numbers only
address costs in terms of development time and payroll; the
costs of shipping defective software or being beaten to
market by a competitor are also worth considering. Since the
effects of lousy code persist until its removal, the only
suitable approach is to deal with it early and regularly.

In the build-up to 2023, the tech industry has scaled back or
even eliminated entire teams to cut costs. The sector layoffs
and cost-cutting measures now require tech leaders to
become proficient in achieving more results with fewer
resources. Engineering leaders are facing the challenge of
optimizing the efficiency of their teams: cutting delivery costs
and elevating developer productivity.

According to the Association of Computer Machinery (ACM),
technical debt wastes 23-42% of developers’ time³ . Gartner
predicts that Infrastructure and Operations leaders actively
managing and reducing technical debt will achieve 50% faster
delivery times by 2023⁴. That aligns with a McKinsey study
that showed companies that manage their tech debt
effectively could allow engineers to spend up to 50% more
time on work that supports their business goals⁵.

Besides preventing teams from working extra hours, efficient
code health measures reduce the cost of shipping a product
or feature and later improvements. A product with good code
quality often requires fewer rounds of testing since all the
minor issues are quickly discovered and rectified.

 ² "Software developers are now more valuable to companies than money." 6 Sep. 2018,

Accessed 1 Feb. 2023

³ "Code Red: the Business Impact of Code Quality - InfoQ." 17 Oct. 2022,

Accessed 1 Feb. 2023.

⁴

https://www.cnbc.com/2018/09/06/companies-worry-more-about-access-to-software-
developers-than-capital.html.

https://www.infoq.com/articles/business-impact-code-quality/.

https://www.gartner.com/en/publications/how-to-assess-infrastructure-technical-debt-to-
prioritize-legacy-mmodernization-investments

, https://www.mckinsey.com/
capabilities/mckinsey-digital/our-insights/tech-debt-reclaiming-tech-equity

"Assessing Technical Debt to Prioritize Modernization Investments."

. Accessed 1 Feb. 2023.

⁵ " Tech debt: Reclaiming tech equity - McKinsey." 6 Oct. 2020
.

Accessed 1 Feb. 2023.
 

https://www.cnbc.com/2018/09/06/companies-worry-more-about-access-to-software-developers-than-capital.html
https://www.cnbc.com/2018/09/06/companies-worry-more-about-access-to-software-developers-than-capital.html
https://www.infoq.com/articles/business-impact-code-quality/
https://www.gartner.com/en/publications/how-to-assess-infrastructure-technical-debt-to-prioritize-legacy-modernization-investments
https://www.gartner.com/en/publications/how-to-assess-infrastructure-technical-debt-to-prioritize-legacy-modernization-investments
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-debt-reclaiming-tech-equity
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/tech-debt-reclaiming-tech-equity

The Survey
The survey had two sections: the process and the results of ensuring code health.

Process

 How often code quality and security is
analyze

 Tools used to track and improve code healt

 Considerations when measuring code health

Results

 Overall satisfaction with their code healt

 Alignment vis-a-vis determining severity and
priority of code health issue

 Perception on the impact of the processes on
onboarding
 

Survey Audience
We surveyed professionals currently working in software development or application security, with at least five years of
experience in those roles. They are based in the United States and work at companies with at least 200 employees.

For how long have you been part of software development or software security (including previous
companies)?

18.50%
10 to 15 years

40.50%
7 to 10 years

36%
5 to 7 years

5%
15+ years

What’s the size of your current company?

0

49

67

48

28

8

SECTION ONE

Code Health: Processes

Respondents at smaller companies (200-500 employees) are less likely to run code analysis continuously and were more likely to
do so daily (28.57% of the respondents in that category). At least 34% of all survey respondents are continuously analyzing their
codebase. Nearly 60% are running continuous analysis or during every release.

How often do you (or does your team) analyze the quality and security of your code?

34.50%

Continuously

16%

Weekly

26%

Daily

23.50%

Every release

Challenges in the Code
Review Process
Conducted to find bugs and improve the overall quality of the
software, the code review process stands out as a tried and
tested method in an ample palette of applications that
enables the systematic examination of software source code.

Since the review process is an additional step between
writing and shipping code, it might impact your team’s ability
to remain efficient. Some ways the code review process halts
developer productivity include longer shipping time, reduced
focus on other tasks, and longer review times for extensive
reviews.
 

Optimizing the Code Review Process

Automation can improve the code review process by
streamlining repetitive tasks, reducing errors, and increasing
the speed and efficiency of the review process. Teams use
automated tools to check coding standards, detect potential
bugs, and perform static code analysis. Automated tools can
provide suggestions for improvement and allow multiple
reviewers to collaborate and track changes in real-time. That
helps reduce the time and effort required for code review,
allowing developers to focus on more critical tasks.

Automated tooling effectively enforces code standards,
identifies vulnerabilities, tracks key metrics, and gathers files.
Still, teams should avoid relying entirely on tooling and
forgoing team member involvement to conduct code reviews.
Instead, they should view those tools as an extension of code
reviews and a way to enhance the process.
 

What is the Code Quality Process
Supposed to Look Like Moving Forward?

Numerous organizations have varying code quality objectives,
significantly influencing the nature of their security processes.
Reasons why the security process often intersects with code
review efforts include

 Code review can help usher in some test processes'
automation, saving time and manual effort by specifying
project-related rules for the test process

 Code review helps identify errors in the code early, fixing
issues as they are detected.

 Code review improves source code quality and security
since data leaks and other security issues are reported
more often. It can also identify vulnerabilities in runtime,
depending on which type of code analysis your testing
team implements. Additionally, it improves the coding
standards among developers

 Code review ensures faster time-to-market, enabling
companies to test the code faster and simultaneously
release that product to cope with the market demand

 Code review enables seamless integrations with different
development life cycle phases, allowing companies
worldwide to adopt Agile practices for increasingly faster
releases.

Employing Static Analysis

The method involves analyzing the source code for potential
issues without actually executing it. When used during the
code review process, several code quality and security issues
can be automatically detected, reducing manual effort. Static
analysis is helpful to quickly identify potential threats,
reducing the time and effort needed to detect them, which
could take several hours or even days without automation.

Modern static analysis tools run continuously on the code
base and new changes, similar to continuous integration (CI).
Every time a team member makes a new commit, the changes
are analyzed to detect the issues. That shifts the process of
finding and fixing code health issues left.
 

Benefits of Continuous Quality
Continuous Quality (CQ) is a software development practice
where code changes are immediately evaluated for their
impact on the code's quality and maintainability and reported
before being incorporated into the codebase. The objective
of CQ is to provide quick feedback, enabling the identification
and resolution of issues that may harm the maintainability of
the code or escalate technical debt.

Maintaining code health is vital, and practices like peer-
review of code, static analysis checks, and tracking key
metrics like documentation coverage, test coverage, etc.,
help in this endeavor. Implementing CQ is a formal way to
combine all these practices in the software development
workflow. When combined with practices like CI and CD, CQ
helps ensure that the team can deliver reliable software
faster.

Some key benefits of implementing Continuous Quality as part
of the development workflow include:

More reliable and secure software

A fundamental principle of CQ is to identify defects in
code, such as anti-patterns, bug risks, and security
vulnerabilities, as early as possible in the development
process. By bringing these issues to the developer's
attention while they can still be easily addressed, the
likelihood of fixing them is increased compared to when
they are discovered later. By repeating this process,
frequently occurring problems have a higher chance of
never making it into the codebase, resulting in more
reliable and secure software free of defects.

Faster time-to-market

CQ automates a significant portion of the code review
process typically carried out by experienced developers.
Identifying and fixing even minor issues before the
review are typically resolved before it takes place, saving
junior and senior developers time. That allows them to
focus on more important tasks, resulting in a more
streamlined and efficient code review process.

The improved reliability provided by CQ also minimizes
the need for manual testing and verification, speeding up
releases in production.

Reduced cost of software maintenance

Maintenance tasks such as debugging, refactoring, fixing
broken dependencies, adapting code to new
requirements, etc., consume a significant amount of
developer time and focus. Insufficient documentation
and a lack of quality processes can further complicate
these tasks. CQ ensures that basic code hygiene and
source code health metrics are maintained, making
adding new modules, expanding existing functionality,

or porting software to a new environment more
manageable.

Better estimation of release timelines

Accurately estimating the time required to deliver a new
feature is crucial for determining the go-to-market
strategy and associated revenue streams. Doing so
without understanding the codebase's current state can
lead to inaccurate predictions. CQ provides decision-
makers with the necessary information to make more
informed and realistic estimates of the release timeline.

Improved customer satisfaction

Customers desire a stable and secure product that
functions as advertised without crashing. Building
software can be challenging, especially at scale. CQ
implements quality control from the earliest stages of
software development and for each small change made
to the software. That enables teams to thoroughly
execute quality control and concentrate on delivering an
exceptional product experience to customers.

Increased developer happiness

Processes like CQ help reduce the grunt of work in
development workflows, automate processes where
possible, and provide certainty to developers. Saving
time and increasing productivity boosts morale and
enables developers to do their best work.

Up to 80% of respondents currently use at least four different tools to ensure the quality and security of their code. Thirty-seven
percent of respondents use at least seven tools to achieve the same end.

How many tools do you use to track and improve the quality of your code?

40

86

49

51

67

23

48

51% percent of respondents selected “disparate tools” as one of the issues associated with their current code analysis process.

Some of the issues with my current code quality and security assurance process include (select all that
apply)

51 %

49 %

30 %

Linting tools help automate code reviews. They perform basic static code analysis by flagging programming errors, bugs, style
issues, and security vulnerabilities before the code is compiled and runs. While integrating these tools into your workflow is largely
beneficial, some drawbacks may make them the wrong choice for long-term or more sophisticated software development.

Downsides of Too Many Code
Health Tools

Increased complexity and cost

Using multiple tools can make the code review process
more complex and time-consuming. Integrating all the
tools into a unified workflow can be challenging, leading
to a lack of consistency and increased effort. Each tool
also comes with its price and license fees. Relying on too
many tools can significantly increase the cost of ensuring
code quality.

Decreased collaboration

Using multiple tools can make it harder for teams to
collaborate effectively, as each tool may have different
ways of communicating and sharing information.

Maintenance challenges

Maintaining and updating multiple tools can be challenging
and time-consuming. Keeping up with updates and
changes to each tool can quickly become overwhelming.

Differing functionality sets across code
analysis tools

The lack of standardization among tools with different
functions creates difficulties. Some tools concentrate
solely on a single aspect of code quality, such as security,
syntax, code coverage, or code style. Multiple tools
perform various functions, making it challenging to view
code health comprehensively. Finally, having the same
errors highlighted by numerous tools can be irritating.

Benefits of Streamlining Code
Health Tooling

Better error detection

By reducing the number of tools, developers can be more
confident in the accuracy of error detection, as there is
less chance of encountering conflicting information
coming from different tools. That can help reduce
confusion and increase productivity.

Increased efficiency

By reducing the number of tools, the development process
becomes less complex, leading to a more efficient and
effective workflow.

Enhanced collaboration

Using fewer tools reduces the risk of confusion over who
discovered and resolved issues, leading to improved
communication and collaboration between developers.
That can result in a more cohesive and effective
development team.

Cost savings

Organizations can achieve cost savings by decreasing the
number of tools they use, as they would not need to invest
in and maintain numerous separate tools. That can lead to
significant savings, particularly for organizations with
limited resources

Challenges with High False-
Positive Rates

Almost half of the surveyed selected “high false-positive
rates” as one of the issues with their current code quality
process. When quality tools alert developers with false
positives too often, developers start dismissing them. A
potential habit of treating everything as a false positive
follows, eventually erasing the benefits of static code
analysis.

Longer differentiation time

Developers often have to manually distinguish real issues
from false positives, resulting in extra time and effort to
identify and resolve the issues discovered. That requires
manual and automated solutions, making the process more
time-consuming and inefficient.

Lack of confidence in code reports

The increased presence of false positives in code analysis
reports can lead developers to disregard information they
disagree with. That can cause them to focus on what they
think could be wrong instead of what is wrong, leading to
a greater chance of overlooking severe issues. Those more
confident in their coding may likely ignore such problems.

Confusion over standardization

As developers discuss what constitutes a genuine
problem never ends, creating definite regulations for code
quality becomes increasingly challenging. Even if they
agree on the flaws identified in one iteration, similar issues
will likely resurface in future iterations, demonstrating no
progress in producing better code from the onset.

Although developers may simply adjust the linter
configuration to prevent false positives, doing so across
several liters (with varying settings) is cumbersome and
heightens the risk of human error. Some tools have
incomplete rules, and there might be inconsistencies in
setting updates, which makes the argument for streamlining
the code quality process even more compelling.
 

Reliability, Performance, and Maintainability
According to our survey, the respondents ranked "Reliability" as the most critical aspect to consider when assessing the health of
their codebase, followed by "Maintainability" and "Performance." These three aspects are essential for a codebase's overall health
and effectiveness.

What do you consider when measuring the quality of your code (check all that apply)?

76

98

116

76

121

117

61

Reliability is a crucial aspect of a healthy codebase, as it is
vital to building and maintaining the trust of users and
customers. A reliable codebase functions as intended, even
under heavy use and stress, which helps to ensure user
satisfaction and confidence in the application.

Maintainability plays a role in reliability as well. It refers to the
ease of making changes and updates to the software, which
can significantly impact the overall development cost. There
are reports that software maintenance costs can range from
40% to over 90% of the total cost of development⁶.

Teams can improve maintainability by avoiding complexity and
code duplication, ensuring readability, and proper
documentation. Here, code coverage helps to identify any
areas of the code that are not being tested and are, therefore,
more likely to contain bugs or be challenging to maintain.

Performance is about how well the code does what it’s
supposed to do. It involves comparing how fast the code can
be executed and how many resources it requires to function
as loads rise. Performance points are a great way to measure
the overall quality of a software system. They can be an
effective tool for judging the success of a software project.

 ⁶ "App Maintenance Cost Can Be Three Times Higher than ... - Techstep." 2 Nov. 2021

Accessed 1 Feb. 2023.

 https://www.techstep.io/articles/app-maintenance-cost-can-be-three-times-higher-than-

development-cost.

https://www.techstep.io/articles/app-maintenance-cost-can-be-three-times-higher-than-development-cost
https://www.techstep.io/articles/app-maintenance-cost-can-be-three-times-higher-than-development-cost

SECTION TWO

Code Health: Outcomes

Impact on Developer Productivity
Nearly 60% of the respondents state that their code health screening process caused delays at least half the time.

Ensuring the quality and security of my codebase has caused me or my team to miss delivery deadlines

48

35

53

28

Ensuring the overall quality of the code to avoid technical
debt should not keep dev teams from meeting deadlines.
Shifting quality and security left is now the standard. By
catching issues earlier, fixing them is easier and more
affordable and helps prevent issues from being deployed to
production. This approach also helps improve collaboration
between development, security, and operations teams, as
they work together to ensure the quality and security of the
code.

Additionally, shifting security and quality left helps meet the
increasing demand for faster and more frequent software
releases while maintaining the highest quality and security
standards. Shipping quality code without compromising speed
is the ultimate differentiator, as it allows businesses to offer
new products and features at a competitive pace.
 

Solutions that help optimize code deliveries should also
provide visibility into the development process, allowing
software and security leaders to stay aligned with other
stakeholders in the organization via reports. This visibility
ensures that everyone is aware of the progress toward
business goals and any potential risks or issues that may
arise. It can also help leaders make data-driven decisions and
allocate resources more effectively.
 
 

Reports that provide insights into the health of the code can
help technical leaders and business stakeholders stay aligned
by offering a shared understanding of the software's security
posture, performance, and overall quality. Such reports can
provide a clear picture of any vulnerabilities and risks
associated with the software, enabling the team to prioritize
issues and allocate resources effectively. Those reports can
help stakeholders make informed decisions on budget,
timelines, and other factors, allowing them to align business
goals with technical needs.
 

Impact on Onboarding
A silver lining: approximately 80% of the respondents agree
that their code review process has helped their teams
improve developer onboarding and expand their skill set.
 
 
 

Our code analysis process has facilitated developer

onboarding

14

29

84

71

In the United States alone, the number of people working from
home tripled between 2019 and 2021, according to the United
States Census Bureau⁷. Dev leaders should use solutions to
identify and address skills gaps without over-the-shoulder
reviews and face-to-face interactions.

More than fixing current code issues is required to prevent
them from recurring before the next release. It's essential to
also focus on developing the skills of team members to ensure
sustainable improvements and prevent future issues. Static
Analysis can help close the knowledge gap in software
development teams by providing a comprehensive view of the
code, identifying areas for improvement, and providing
actionable insights for further development.

Providing real-time visibility of code issues and how to fix
them through ongoing professional development is an
essential aspect of efficient deliveries. This approach
empowers developers with the knowledge and skills to
identify and address problems as they arise rather than
waiting for them to be discovered later in the development
process. That can lead to faster delivery times, improved code
quality, and a more confident and skilled development team.

Offering developers the tools and resources they need to
improve their skills continuously helps to create a culture of
continuous learning and development, which can further
enhance the overall efficiency of the software development
process..

⁷ "The Number of People Primarily Working From Home Tripled" 15 Sep. 2022,

 Accessed 1 Feb.

2023.
 
 

https://

www.census.gov/newsroom/press-releases/2022/people-working-from-home.html.

https://www.census.gov/newsroom/press-releases/2022/people-working-from-home.html
https://www.census.gov/newsroom/press-releases/2022/people-working-from-home.html

Conclusion
Developers can elevate their confidence and efficiency by using streamlined tooling, effective

automation, and comprehensive reporting to ensure code health. They can also promote secure and

stable software, reduce the cost of developing and delivering software, speed up producing high-

quality products and features, and improve your brand's reputation.
 

About Us
 DeepSource is the code health platform, providing software developers with the
resources they need to create maintainable and secure code, leading to increased

software stability and faster development times.
 

Schedule a today, or visit our to learn more about us.demo website

Trusted by companies, from startups to Fortune 500s
 3,700

Schedule a Demo

https://deepsource.io/schedule-demo?utm_source=content&utm_medium=whitepaper&utm_campaign=whitepaperq123
http://deepsource.io/?utm_source=content&utm_medium=whitepaper&utm_campaign=whitepaperq123
https://deepsource.io/schedule-demo?utm_source=content&utm_medium=whitepaper&utm_campaign=whitepaperq123

